
Complex Engineering Problems and Activities in CE Programs

Design of Concrete Structures (Sessional Course-Example): PO to CO Mapping

Course Outcomes	Program Outcomes (PO) and Knowledge Profile (K)		
	complex engineering problems reaching substantiated conclusions using first		
	principles of mathematics, natural sciences and engineering sciences. (K3, K4 and K8)		
beams, columns and foundation, etc.	PO(c) Design/Development of solutions: Design solutions for complex engineering problems and design systems, components or processes that meet specified needs with appropriate consideration for public health and safety, cultural, societal, and environmental considerations. (K5)		
components	PO(e) Modern tool usage: Create, select and apply appropriate techniques, resources, and modern engineering and IT tools, including prediction and modelling, to complex engineering problems, with an understanding of the limitations. (K6)		
and present it by oral presentation and written report	PO(j) Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such a being able to comprehend and write effective reports and design documentation make effective presentations, and give and receive clear instructions.		

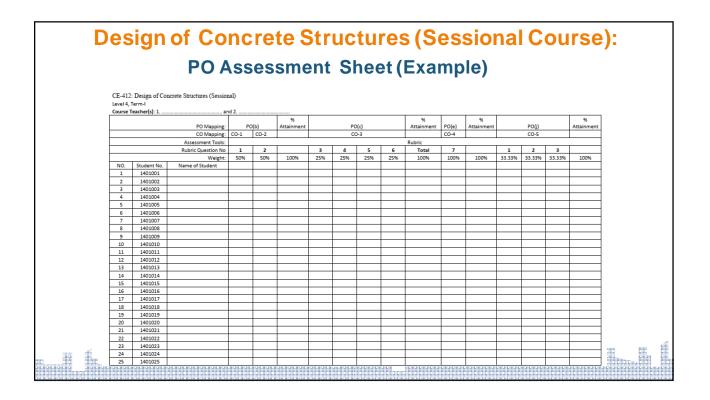
Design of Concrete Structures (Sessional): Design Example (Group Assignment)

Conduct a structural design of a 10-story reinforced concrete residential building, located in a densely populated area in Chattogram town. The structural cost of the building must be low and it must ensure the public health and safety issues.

- Given information:
- 1. Soil exploration data
- 2. Approved architectural layout of the building

- 3. Structural framing of the building
- 4. Material Properties

Design of Concrete Structures (Example): Mapping of Tasks with POs, WPs, WKs and EAs


Possible tasks	Course Outcomes (CO)	Program Outcomes (PO)	Knowledge Profile (WK)	Complex Engineering Problem (WP)	Complex Engineering Activities (EA)
T-1:Identify the problem, specific requirements and constraints involved	6 CO-1	PO(b): Problem		W P1: Depth of Knowledge	
T-2: Develop multiple potential solutions to meet functional requirements	CO-2	Analysis	WK3 WK4	WP2: Range of Conflicting requirements	
T-3: Design different components of the building, such as slab, beams, columns and foundation, etc. and find the optimum solution	CO-3	PO(c): Design/ Development Solutions	WK5	WP3: Depth of Analysis Required	
T-4: Use of modern tool in analysis and design of structural components	CO-4	PO(e): Use of Modern Tools:	WK6	WP5:Extensive Applicable Codes	
T-5: Prepare a structural drawing of the	CO-5	PO(j)			EA1:Range of resources
building using AutoCAD and present the results by oral presentation and written report		:Communication			EA3: Innovation

Design of Concrete Structures (Sessional Course): Assessment Rubric for Design Solutions

No.	Criteria	Exceptional	Acceptable	Marginal	Unacceptable
1	Design Problem and Boundaries	Clear and complete understanding of design goal and constraints.	Overall sound understanding of the problem and constraints. Does not significantly impair solution	Some understanding of problem. Major deficiencies that will impact the quality of solution.	Little or no grasp of problem. Incapabl of producing a successful solution
2	Application of Engineering Principles	Critical selection and application of engineering principles ensuring reasonable results.	principles resulting in reasonable and use of engineering principle		No or erroneous application of engineering principles yielding unreasonable solution
3	Alternative Designs	Final design achieved after review of reasonable alternatives.	Alternative approaches identified to some degree.	Serious deficiencies in exploring and identifying alternative design	Only one design presented or clearly infeasible alternative given.
4	Final Design	Design meets or exceeds desired objectives.	Design meets desired objectives.	Barely capable of achieving desired objectives.	Not capable of achieving desired objectives.
5	Cost estimation	Effective use of profitability analysis leading to improvement recommendations.	Reasonable profitability analysis presented, but no interpretation of the results	Reasonable cost estimates presented, but no profitability analysis included	No or totally erroneous cost estimate presented.
6	Applicable of design codes	complete understanding and consideration of design Code	Good understanding of the design Code but limited consideration	Limited knowledge and consideration of design Code	Little or no knowledge and consideration of design Code
7	Use of Computer- Aided Tools	Computer-aided tools are used effectively to develop and analyze designs.	Computer-aided tools used with moderate effectiveness to develop designs	Minimal application and use of appropriate tools.	Serious deficiencies in understanding the correct selection and/or use of to

Design of Concrete Structures (Sessional Course): Assessment Rubric for Engineering Communication

No.	Criteria	Exceptional	Acceptable	Marginal	Unacceptable
1	Written Mechanics	Production quality enhances communication.	Acceptable production quality: accurate spelling and grammar; appropriate choice of fonts and colours; appropriate use of language	Marginal production quality: minor errors of spelling an grammar; irregular fonts and layouts.	Unreadable: illegible, unprofessional.
2	Oral Performance	Voice, body posture, and handling of questions convey confidence and full knowledge of work being presented	Professional tone and body language: loud and clear; oral performance compliments visual ma terial; competent han dling of questions.	Acceptable tone and body language; some nervousness may be notable; relies heavily on slides to communicate rather than using slides as supporting aids	Unprepared; inaudible; nervous habits may be distracting; unable to answer reasonable questions.
3	Graphical Representations	Graphics enhance communication; clearly present message and meaning	Professional use of figures, tables and images that compliment the written/oral components: properly labeled, plotted, sized	Acceptable use of figures and images: some minor problems with layout, sizing, legibility, colour	Distracting, confusing, or inappropriate graphics that detract from the written or oral content
					àtl. bas

